陈伟伟 | Collective Argumentation with Topological Restrictions

发布日期:2024-02-19

image-20240228092759-1

       陈伟伟,抢庄牛牛-抢庄牛牛规则 副教授,硕士生导师。中山大学哲学博士,荷兰阿姆斯特丹大学逻辑、语言与计算研究所联培博士。主要研究方向为形式论辩与社会选择。在《Artificial Intelligence》、《Journal of Logic and Computation》、AAMAS、TARK等期刊和会议上发表论文多篇,主持国社科后期、教育部人文社科青年基金等课题多项,担任IJCAI、AAMAS、《逻辑学研究》等多个期刊和会议的审稿人。 

 

论文题目:

Collective Argumentation with Topological Restrictions: The Case of Aggregating Abstract Argumentation Frameworks

image-20240228092908-2

本文刊于《Journal of Logic and Computation》,2023年3月第33(2)卷。

 

论文摘要:

       Collective argumentation is the process of reaching a collective decision that is acceptable to the group in a debate. We introduce the notion of topological restriction to enrich the study of collective argumentation. Topological restrictions are rational constraints assumed to be satisfied by individual agents. We assume that in a debate, for every pair of arguments under consideration, every agent indicates whether the first argument attacks the second, i.e. an agent’s argumentative stance is characterized as an argumentation framework, and only argumentation frameworks that satisfy topological restrictions are allowed. The topological restrictions we consider in this paper include various topological properties in the literature, such as acyclicity, symmetry, coherence and determinedness, as well as three topological restrictions that generalize classic social-choice-theoretic domain conditions. We show that when the profile of the argumentation frameworks provided by the agents satisfies topological restrictions, impossibility results during aggregation can be avoided. Furthermore, if a profile is topologically restricted with respect to restrictions that generalize domain conditions, then the majority rule preserves several desirable properties during aggregation.

 

       在多人辩论中,大家难免会对某些观点或论据存在分歧。如何将这些不同的意见整合起来,形成一个大家都能接受的共识呢?一个常见的做法是采用“简单多数原则”,即按照投票结果来决定最终的结论。然而,社会选择理论的研究表明,这种方法会导致著名的“孔多塞悖论”:即使每个参与者都理性地进行投票,最终的结果也可能违背理性。在形式论辩领域,也有研究表明,在抽象的论辩环境下,只有“独裁者规则”才能保证最终结论的合理性,但这显然是不可接受的。
为了避免群体论辩中的不可能定理,本文提出了一种新的方法,即引入“拓扑限制”的概念。该概念对每个人的观点进行一些合理的要求,例如排除循环论证等。本文研究了聚合过程中几种重要的拓扑限制,包括非循环性、对称性、融贯性和决定性。研究表明,如果每个人的论辩框架都满足这些拓扑限制,那么就可以避免不可能定理的出现。

 

注:Journal of Logic and Computation(逻辑与计算)是一本由牛津大学出版社出版的双月刊,该期刊的目标是促进逻辑和计算机科学之间的交叉和融合,探索逻辑在人工智能等领域的各种应用。该期刊创刊于1990年,根据最新的JCR期刊分区,该期刊属于逻辑学2区。

 

 

原文链接:

//doi.org/10.1093/logcom/exac096

扫描此二维码分享